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The study analyses the cellular reaction zone structure of unstable methane–oxygen
detonations, which are characterized by large hydrodynamic fluctuations and
unreacted pockets with a fine structure. Complementary series of experiments and
numerical simulations are presented, which illustrate the important role of hydro-
dynamic instabilities and diffusive phenomena in dictating the global reaction rate
in detonations. The quantitative comparison between experiment and numerics also
permits identification of the current limitations of numerical simulations in capturing
these effects. Simulations are also performed for parameters corresponding to weakly
unstable cellular detonations, which are used for comparison and validation. The
numerical and experimental results are used to guide the formulation of a stochastic
steady one-dimensional representation for such detonation waves. The numerically
obtained flow fields were Favre-averaged in time and space. The resulting one-
dimensional profiles for the mean values and fluctuations reveal the two important
length scales, the first being associated with the chemical exothermicity and the second
(the ‘hydrodynamic thickness’) with the slower dissipation of the hydrodynamic
fluctuations, which govern the location of the average sonic surface. This second
length scale is found to be much longer than that predicted by one-dimensional
reaction zone calculations.

1. Introduction
Research in the past 50 years has demonstrated that most self-sustaining detonations

in gaseous explosive mixtures are unstable and have a three-dimensional non-steady
cellular structure (Fickett & Davis 1979). Figure 1 shows an example of the simpler
two-dimensional frontal cellular structure obtained in the present study, along with
an explanatory sketch. The present study attempts to provide an understanding of the
dynamic evolution of such structures, both locally in terms of the fine-scale details
appearing with overwhelming complexity, and globally, in a hydrodynamic average
sense, in order to permit a large-scale modelling of such structures. The large-
scale ‘cellular’ dynamics are now relatively well understood. The two-dimensional
cell boundaries shown in the sketch of figure 1 are formed by the intersection of
transverse shock waves with the leading shock front. These shock interactions are
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Figure 1. Schlieren photograph of detonation structure in a CH4 +2O2 mixture at 3.4 kPa
initial pressure in a 25mm by 100mm cross-section channel, and explanatory sketch.

triple-shock Mach intersections. Shear layers and transverse shocks extend from the
cell boundaries into the reaction zone behind the leading shocks. The transverse
shocks sweep laterally across the leading shock surface and collide with each other.
They also interact and sometimes couple with the reaction layers, as can be seen near
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the centre of the picture in figure 1. These shock reflections also cause the leading
shock front to pulsate in the direction of propagation and alternate between strong
Mach stems and weaker incident shocks. Previous measurements indicate that the
velocity of the leading shock generally fluctuates from approximately 0.7 to 1.6 times
the average velocity between transverse wave collisions (Fickett & Davis 1979). Owing
to this very large variation in leading shock strengths, the distribution of reaction
rates behind the different portions of the shock can vary by up to seven orders,
owing to the exponential dependence of chemical kinetic rates on temperature. This
extreme shock sensitivity has been correlated with the experimental observation of
unreacted pockets behind the front (Subbotin 1975; Radulescu 2003; Austin 2003;
Austin, Pintgen & Shepherd 2005), which can be clearly identified in figure 1, and
with the increase in irregularity of the cell structure and appearance of fine cellular
sub-structure (Manzhalei 1977). These unreacted pockets have been observed in the
past both computationally and experimentally with varying clarity (e.g. Edwards,
Jones & Price 1970; Subbotin 1975a, b; Oran et al. 1982; Bourlioux & Majda 1992;
Oran et al. 1998; Gamezo, Desbordes & Oran 1999; Sharpe 2001; Deiterding 2003;
Radulescu et al. 2005; Austin et al. 2005; Inaba, Matsuo & Tanaka 2005; Hu et al.
2005; Eto, Tsuboi & Hayashi 2005; Deledicque & Papalexandris 2006). To date, the
burning mechanism of these unreacted pockets and how it affects the detonation
dynamics on the larger scales is still not well understood. Nevertheless, experiments
on detonation limits suggest that the detonability of a mixture characterized by these
fine-scale pockets is enhanced with respect to predictions based on the idealized
one-dimensional ZND model (Fickett & Davis 1979), possibly by removing part of
the thermal character of the ignition process and its sensitivity to the leading shock
strength (Radulescu & Lee 2002; Radulescu et al. 2005).

In spite of the fact that detonation waves are three-dimensional and highly
transient, experiments suggest that they propagate, on average, at a velocity within
∼1–2% of the value given by the one-dimensional Chapman–Jouguet (CJ) theory
(Fickett & Davis 1979). This observation pre-supposes that most of the energy of
the unreacted pockets is available to the detonation front and a hydrodynamic
description is worthwhile. It has been proposed that the CJ theory may be valid
in ‘a one-dimensional transverse-average sense’ (Fickett & Davis 1979), although a
meaningful averaged treatment of the highly unsteady three-dimensional detonation
wave structure is still lacking. Furthermore, the CJ theory rests on the hypothesis that
the burned gases are in chemical equilibrium and the flow of the products is sonic
relative to the front. It is thus of interest to determine if the rear of a real three-
dimensional unsteady detonation can be described, at least in an average sense, by
the equilibrium values derived from CJ theory and by an average rear sonic surface.
This would serve as a limiting characteristic surface propagating at u∗ +c∗ (see
figure 2), which has to equal the detonation wave velocity V and separates the
statistically averaged detonation structure from any trailing unsteady expansion waves
(Taylor 1950). We note that the dynamics of the instantaneous limiting characteristic
surface, as it varies with time, was recently studied numerically by Kasimov &
Stewart (2004) for one-dimensional pulsating detonation waves. For a turbulent
multi-dimensional detonation this would be much more difficult. Instead, we are
interested in its mean location, situated at some distance behind the mean detonation
front, which henceforth defines the hydrodynamic thickness.

We are hence interested in determining the average reaction zone structure of deto-
nations. This serves as the basis for the construction of a stochastic one-dimensional
model for detonations. Such a model would be highly desirable in view of the
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Figure 2. x − t diagram illustrating the limiting characteristic at the sonic locus in the
detonation frame of reference.

stochastic properties of sufficiently unstable detonations. For example, Ng et al.
(2005a, b) and later Henrick, Aslam & Powers (2006) showed that the nonlinear
dynamics of one-dimensional unsteady detonation waves follows the classical route
to chaos via period-doubling bifurcations governed by the Feigenbaum constant and
the appearance of odd periods. Based on their study, parameters characterizing most
gaseous detonation waves would fall in the fully chaotic regime. A stochastic one-
dimensional treatment of detonation waves and the consequence of fluctuations on the
nature and location of the sonic surface has been attempted in the past in a number
of studies (Voitsekhovskii, Mitrofanov & Topchian 1963; White 1961; Strehlow 1971;
Panton 1971; Rybanin 1966; Nikolaev & Zak 1989; Lee & Radulescu 2005), where
the governing equations of motion were Reynolds averaged, and their qualitative
properties compared to the CJ theory for laminar flow. Two main relaxation processes
were identified, one associated with the chemical exothermicity, and the second with
the generation and dissipation of mechanical and thermal fluctuations in the reaction
zone, which can act as both a sink and source of energy in the mean flow. Although
these processes were not quantified, it was argued that detonations could be of the
eigenvalue type with deviations from the ideal CJ theory depending on the magnitude
of fluctuations and their rates of dissipation. A consequence of the model is that the
location of the sonic surface can be associated with the competition of the various
relaxation rates, in the same spirit as the action of loss terms such mass divergence,
heat loss or frictional forces (Fickett & Davis 1979). Unfortunately, experiments could
not clearly substantiate the above phenomenology, due to limitations in obtaining
sufficiently accurate experimental measurements (see Fickett & Davis 1979 for an
extensive review of available experiments to that date).

One noteworthy study however is that of Edwards, Jones & Phillips (1976), who
attempted to identify the location of the sonic surface in real detonations from pressure
data measured along the detonation tube wall. They measured the location of the
onset of the expansion wave, which was approximately 4λ to 10λ downstream of the
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leading front, where λ is the preferred spacing between interacting detonation modes
or ‘cell size’. The onset of the expansion wave also corresponded to the length scale
where the pressure oscillations from transverse shocks have decayed to a negligible
intensity. They interpreted their results for the delay of the sonic surface as due to
the slower dissipation of the turbulent energy. Edwards et al.’s estimates for the
location agreed well with the earlier measurements of Soloukhin for the onset of the
Taylor expansion, whose results also indicate that the onset of the expansion wave is
situated approximately 4λ downstream of the leading front (Soloukhin 1966).

In the present study, we investigate the validity of a hydrodynamic description
of detonations by combining complementary numerical simulations and experiments
on the structure. Our focus is to determine the physical processes governing the
global length scale (or time scale) of chemical energy addition at the front and the
length scale for the subsequent decay of fluctuations. We investigate these processes
in a hydrodynamic average sense, where we seek the statistically steady structure of
unstable cellular detonations by space and time averaging. The present study improves
upon a previous attempt by Gamezo et al. (1999). The averaging procedure used by
Gamezo et al. (1999) appears inadequate because changes in density were not taken
into account when computing the averages, which were obtained simply by arithmetic
means of the various properties. The significance of the mean variables obtained in
such an averaging procedure is very complicated due to higher-order terms appearing
when the governing equations are formally averaged by their procedure (Favre 1965).
For detonation waves, where we seek the average thermodynamic state history of
many statistically identical fluid elements traversing the detonation front, a Favre-
average procedure appears more adequate (Voitsekhovskii et al. 1963), where the
density of each fluid element is used to normalize the average properties convected
along with that fluid element (i.e. momentum and energy density).

Experiments on highly unstable methane–oxygen detonations are presented in § 2,
in order to determine the structure of the wave and the global length scales governing
the reactions. Section 3 presents the numerical counterpart to the experimental study,
which provides the detailed temporal resolution lacking in the experiments and
permits a reconstruction of the average profiles. Section 4 presents further numerical
simulations of weakly unstable detonations characterized by regular cellular structures
and a much weaker reaction rate dependence on fluctuations. We conclude the paper
with further discussions of the stochastic modelling of detonations waves. The details
of the Favre-averaged equations and their application to one-dimensional stationary
flows are derived in the Appendix.

2. Experiments
A series of experimental tests was performed for visualization of highly unstable

detonations in order to determine the details of the reaction zone structure and its
average thickness. The experiments were performed at the Shock Wave Physics Group
Laboratory at McGill University. The experimental set-up, described in Radulescu
et al. (2005), consists of a channel of 25 mm by 100 mm cross-section. Stoichiometric
methane–oxygen mixtures were prepared by the method of partial pressures and left
to diffusively mix for at least 24 hours in a high-pressure vessel prior to their injection
in the evacuated apparatus. The detonations were initiated approximately 1000 mm
before the test section via an exploding wire delivering of the order of 100 J. In the test
section, schlieren photographs were taken and the velocity of the wave was estimated
with a pair of PCB pressure transducers spaced 200 mm apart. The experiments were



36 M. I. Radulescu, G. J. Sharpe, C. K. Law and J. H. S. Lee

po (kPa) λ (mm) VCJ (mm µs−1) MCJ te,V N (µs) ∆i (mm) ν (mm2 µs−1)

3.4 200 2.24 6.31 62 18 1.6 × 10−3

6 100 2.27 6.38 31 8.9 9.2 × 10−4

10 50 2.29 6.44 17 4.8 5.6 × 10−4

Table 1. Thermo-kinetic summary of CH4 + 2O2 mixtures; po is the initial pressure, λ the
average detonation cell size, VCJ and MCJ the Chapman–Jouguet detonation speed and Mach
number, te,V N and ∆i the chemical induction time and distance in the steady ZND model and
ν the kinematic viscosity in the burned products at the CJ state.

performed at initial pressures of 10 kPa, 6 kPa and 3.4 kPa, for which the nominal cell
size λ is 50 mm, 100 mm and 200 mm respectively (Laberge, Knystautas & Lee 1993).
Table 1 presents the key thermo-chemical properties of the mixtures, computed with
a chemical equilibrium code (Gordon & McBride 1994) and from ZND calculations
described below.

A total of 19 experiments were conducted at 10 kPa, from which we determined
a wave velocity that is 2.2% below the ideal CJ velocity of 2.290 mm µs−1 with a
standard deviation of 2.4% away from the mean. Figure 3 shows two of the schlieren
photographs obtained. They illustrate well the fine-scale unreacted pockets near
the front and the long tailed transverse shock waves intersecting the main front
at triple points. Photograph (a) was taken with a horizontal schlieren knife edge,
while (b) was taken with a vertical knife edge. The horizontal knife edge captures
the density gradients perpendicular to the front, such as the transverse shocks and
density gradients present in transverse reaction layers. Note that manufacturing
non-homogeneities in the glass appear in the horizontal knife edge photograph (b),
and are not present in (a). In (a) taken with a horizontal knife edge, the direction
of propagation of the transverse waves is determined by the luminosity of the wave:
dark waves are compression (expansion) waves propagating downward (upward)
while bright waves are waves propagating in the opposite direction. The Mach stem
and incident shock portions of the leading shock can be identified from the direction
of propagation of the transverse shocks. The photograph was taken when three
new Mach stems are being formed at the bottom, near the centre and near the top
wall, although some weaker transverse shocks can also be seen. The directionality of
the schlieren system also makes it possible to determine that the density inside the
pockets is much higher than that of the surrounding hot expanded gases. Austin et
al. (2005) present similar flow fields and verify that the pockets are indeed unreacted
via planar-laser-induced fluorescence of the OH radical.

To guide us in the interpretation of the schlieren photographs based on the density
gradient field, we have computed the steady, one-dimensional (ZND) profile of the
detonation. Figure 4 shows the ideal ZND profile for an initial pressure of 10 kPa
computed with a code developed by Shepherd (1986) and the reaction mechanism of
Lutz et al. (1988). The temperature, fluid velocity, density, thermicity φ, pressure and
a few key species concentrations are shown as a function of time; the time origin
is taken at the shock discontinuity. The results illustrate well the thermally neutral
induction zone, during which the radical pool grows. The induction layer terminates
after an induction time te,VN of approximately 17µs with an abrupt energy deposition
lasting approximately 2µs. The corresponding induction length is obtained from
the integration of the velocity profile, yielding �i = 4.8 mm. The narrowness of the
exothermic stage, where density gradients are the largest, guides us in interpreting the
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(a)

(b)

Figure 3. Schlieren photographs of the detonation structure in CH4 + 2O2 mixtures at 10 kPa
initial pressure in a 100 mm by 25 mm cross-section channel; image height is 100 mm; nominal
cell size is 50 mm; the horizontal schlieren cutoff (a) and vertical schlieren cutoff (b) capture
respectively horizontal and vertical density gradients.

schlieren photographs, which also capture density gradients. The spotty region in the
photographs can hence be associated with the high density gradients at the interface of
reacted gases with gases still undergoing their induction period. The global thickness
of the reaction zone can hence be easily identified in the photographs as the region
where the apparent spottiness disappears. For these experiments, the global thickness
of the spotty region is approximately 20 mm, meaning that shocked unreacted gas is
consumed in a distance less than approximately 4 ZND induction lengths.

Very similar conclusions can be inferred from the experimental measurements of the
average gas density performed by Kistiakowsky & Kydd (1956). They report X-ray
absorption measurements for similar initial conditions in methane–oxygen detonations
in a 10 cm diameter round tube. Their method, which integrates across the tube cross-
section, showed the slow (average) density increase across the reaction zone, a clear
signature of the wave three-dimensional structure and the unburned pockets (un-
explainable at the time). Their measurements also showed wave thicknesses based on
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Figure 4. Ideal ZND detonation structure (temperature, fluid velocity, density, thermicity,
pressure and key chemical species concentrations) of a CH4 + 2O2 detonation at 10 kPa initial
pressure computed with the chemical kinetic mechanism of Lutz et al. (1988).

global density changes in the reaction zone very similar to the ones obtained in the
present study.

Further experiments were performed at lower pressures of 6 kPa and 3.4 kPa, which
showed that the phenomena observed scaled uniformly with the inverse of initial
pressure, as expected from kinetic arguments and implied by cell size correlations.
They also permitted a readier determination of the gasdynamic details of the
reaction zone structure. Figure 5 shows three photographs obtained at 6 kPa initial
pressure illustrating the variability observed in the flow field. Photograph (a) shows
a mode 1 detonation with one main triple point near the top wall. The entire shock
extending below the triple point is followed by the very spotty reaction zone structure.
Photograph (b) is a mode 2 detonation where the incident shock is the central part of
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(a)

(b)

(c)

Figure 5. Schlieren photographs of the detonation structure in CH4 + 2O2 mixtures at 6 kPa
initial pressure in a 100 mm by 25 mm cross-section channel; image height is 100 mm; nominal
cell size is 100 mm.
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the shock and the two triple points are propagating towards the centre of the channel,
as can be deduced from the luminosity of the transverse shocks extending to the back.
Perhaps the most easily understood photograph is (c), displaying clearly a mode 3
detonation. Two triple points are colliding near the upper part of the photograph, and
a similar reflection occurs at the bottom wall. The complexity of the dynamics of the
front is well-illustrated, compatible with the observations made in the past regarding
cellular foils and the present results of the numerical simulations (see below). In all
photographs, we also note that fine scales are always observed until the limit of the
experimental technique of ∼1 mm, due to the motion blur from the ∼1 µs exposure
of the photographs. Fine texture is observed behind the incident shocks and Mach
stems and in the growing tongue-shaped structures engulfing the gas shocked by the
weaker incident shocks.

From seven repeat experiments performed at 6 kPa, we deduced a wave velocity
lower than the ideal calculated value by 2.1% with a standard deviation of 4.7%.
Although wall losses may entirely account for these small velocity deficits, the fact
that they are relatively small suggests that waves close to the true self-sustained fully
developed detonations were established. In this sense, the sub-structure observed is
not a consequence of marginality, but characteristic of these unstable detonations.
The present photographs also allow the measurement of the global reaction zone
thickness, yielding a total burnout of all the gases processed by the front in less than
approximately 30 mm. For this initial pressure, the ZND induction length is 8.9 mm,
meaning that most gases are consumed in less than ∼4 ZND induction lengths.

At the lower pressure of 3.4 kPa, although the cellular structures are large enough
to permit detailed observation, wall losses begin to play a more significant role. From
seven consecutive experiments, a velocity deficit of 20% is observed, with a standard
deviation between experiments of 5.8%. Figure 6 shows two photographs, clearly
illustrating the reaction zone structure of the detonation wave. The various features
are indicated in the sketch of figure 1. In all photographs, the central part of the front
is the weaker incident shock, observed at various stages of the cellular dynamics. Also
clearly visible are the unreacted tongues of gas corresponding to gases shocked by the
incident shock and transverse shocks at an earlier time. The filamentary structure of
the shear layers separating burned and unburned gases can be clearly identified, which
persists at the boundary of the unreacted pockets. A complete re-construction of the
flow field will be given below based on the numerical simulations, which provide the
large-scale temporal resolution lacking in the experiments.

Although the channel size is approximately half a nominal cell, multiple modes are
observed on the structure. The dynamics of the front changes between double mode
and single mode, the latter being presented in Radulescu et al. (2005). These photo-
graphs also allow the revision of an incorrect interpretation given by Radulescu et al.
(2005) regarding one of their earlier photographs (Fig. 2A in their paper). The ‘bulge’
observed in their photograph, assumed to be associated with an explosion event in a
mode 1 detonation, is in fact a consequence of the interaction of multiple modes of the
frontal structure, such as those of figure 6. The error was confirmed later by Kiyanda,
Higgins & Lee (2005), who repeated the experiments with multiple frame capabilities.

One such experiment conducted by Kiyanda using the same experimental set-up
and initial conditions is shown in figure 7 (Kiyanda 2005). It illustrates a sequence
of four consecutive frames taken at 20 µs interval of a mode 1 detonation at 3.4 kPa.
Column (a) presents the schlieren photographs taken with a vertical knife edge, while
column (b) shows two simultaneous self-luminescence records taken with a separate
digital camera, which captures the regions of chemical reaction and to some extent
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(a)

(b)

Figure 6. Schlieren photographs of the detonation structure in CH4 + 2O2 mixtures at 3.4 kPa
initial pressure in a 100 mm by 25 mm cross-section channel; image height is 100 mm; nominal
cell size is 200 mm.

the emission from the shocked hot gases. In the first frame, the triple point is close to
the top wall and is propagating downwards. The bottom portion of the lead shock is
the incident weaker shock. The sequence of photographs illustrates well the regions
of intense chemical reaction behind the Mach shock and the filamentary intermittent
nature of the chemical activity behind the incident shock and in the unreacted pockets.

At 3.4 kPa, both our photographs and those of Kiyanda reveal that the pockets are
consumed within a distance of 100 mm behind the front. The ZND induction length
∆i of a CJ detonation is 18 mm, implying that the pockets are consumed within less
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(a)

(b)

Figure 7. Sequence of schlieren photographs (a) and (b) self-luminosity of the detonation
structure in CH4 + 2O2 mixtures at 3.4 kPa initial pressure in a 100 mm by 25mm cross-section
channel; image height is 100 mm; nominal cell size is 200 mm; frames taken at 20 µs interval
(courtesy of Charles B. Kiyanda).

than ∼6∆i . It is remarkable that the pockets burn out within less than 100 mm, in
spite of the fact that the wave propagates with a global velocity deficit of 20%. Hence,
the conclusion obtained from the above experiments at all the pressures investigated
is that in spite of the large fluctuations observed on the detonation structure, the
global reaction zone thickness of the wave was always of the order of 4–6 ZND
reaction zone lengths.

When one considers the ignition delays behind the various portions of the wave,
such as at the low-velocity incident shocks propagating at V̂ ≈ 0.7V̂CJ (see figures 6
and 7), it is difficult to account for the observed rapid burnout of the pockets with
diffusionless ignition alone as the burning mechanism. Quantitatively, the ignition
delay dependence on the shock state can be modelled by a one-step Arrhenius



The hydrodynamic structure of unstable cellular detonations 43

dependence. The activation energy was obtained from the Lutz et al. (1988) mechanism
via constant-volume homogeneous explosion simulations over the range of temperat-
ures of interest. Normalized by the shock temperature, we obtain an activation energy
of θVN = Êa/R̂T̂ VN = 11. This value is in very good agreement with the value deduced
experimentally by Thomas & Edwards (1983) for methane–oxygen mixtures ignited
by decaying incident shocks. Since the activation energy is sufficiently large, one
can make the Frank–Kamenetskii approximation to obtain the local homogeneous
explosion time t̂e (Williams 1985). The ratio of t̂e and the explosion time behind the
shock at the von Neumann state t̂e,VN thus becomes

t̂e

t̂e,VN

=

(
T̂

T̂ VN

)2

exp

[
θVN

(
T̂ VN

T̂
− 1

)]
, (2.1)

which shows the exponential dependence of the characteristic reaction times on local
temperature. Since we are dealing with strong detonations with M2

CJ � 1, one can
further make the strong shock approximation, for which

T̂

T̂ VN

∼=

(
V̂

V̂CJ

)2

(2.2)

and the ignition delay can hence be written as

t̂e

t̂e,VN

=

(
V̂

V̂CJ

)4

exp

[
θVN

(
1

(V̂ /V̂CJ)2
− 1

)]
, (2.3)

which shows that the ignition delay behind an incident shock with velocity V̂ /

V̂CJ = 0.7 is lengthened by a factor 2 × 105. The great lengthening of the induction time
expected for diffusionless ignition is completely inconsistent with the experimental
observations, which show reaction times a few orders of magnitude shorter.

A further interesting observation relates to the ∼20% global velocity deficit in
the experiments performed at 3.4 kPa. From (2.3), this velocity deficit would lead to
an increase of the ignition delay time of the bulk of the gases by a factor of 200,
had diffusion been negligible. One would hence expect a lengthening of the structure
by two orders of magnitude. This is not the case, as the reaction zone thickness is
only minimally affected by the velocity deficit: the shocked gases react within ∼6∆i ,
compared to ∼4∆i for the non-marginal waves at higher pressures. This is thus
indicative of how the multi-dimensional structure of the wave removes most of the
thermal character of the global reaction rate, already observed in limit experiments
(Radulescu & Lee 2002). We will discuss this effect in detail below when we analyse
the reaction zone structure for highly unstable detonations determined numerically.

3. Simulations of methane–oxygen detonations
3.1. Range of scales

Before proceeding with the numerical simulations of such unstable detonations, it
is worthwhile first to estimate the expected range of scales which would require
resolution. The two important length scales to be considered are that over which
turbulence dissipates the energy generated via hydrodynamic instabilities in the
reaction zone structure, and that corresponding to the thickness of a laminar flamelet
that could be established along the contact surfaces separating reacted and unreacted
gas such as the pockets illustrated in the above photographs.
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The first length scale, corresponding to the Kolmogorov scale for energy dissipation,
can be estimated by assuming that a turbulence cascade operates between the scales at
which energy is being injected and the viscous scales. Although in reality the physical
processes are very complex and involve compressible turbulence such as shock and
density layer interactions, one can estimate the Kolmogorov length scale based on
an order-of-magnitude phenomenological picture for the energy cascade. Following
Kolmogorov phenomenology and omitting numerical coefficients of order 1 (see for
example Frisch 1995), if energy is injected at the scale l1 in the form of kinetic energy,
i.e. v2

1, the cascade requires the invariance of the energy flux all the way to the viscous
Kolmogorov scale l2, where it is dissipated into heat, yielding

u3
1

l1
≈ u3

i

li
≈ u3

2

l2
, (3.1)

where the subscript i denotes an inertial scaling range quantity. In terms of eddy-
turnaround times, (3.1) can be re-written as

u2
1

t1
≈ u2

i

ti
≈ u2

2

t2
, (3.2)

At the Kolmogorov scale l2, the local Reynolds number is close to unity such that
viscous forces can damp the eddy’s motion, i.e.

u2l2

ν
≈ 1, (3.3)

where ν is the kinematic viscosity. Back substituting, we obtain the well-known result
expressing the ratio of length scales separating the integral scale l1 and Kolmogorov
scale l2 in terms of the Reynolds number evaluated at the integral scale:

l2

l1
≈

(
u1l1

ν

)−3/4

≈
(

u2
1t1

ν

)−3/4

, (3.4)

where t1 is an integral time scale over which the energy is deposited. For detonations,
the energy is deposited over a time scale corresponding to the exothermic stage of the
reactions. We can take as a reference the time scale of the exothermic region of the
ZND profile, the time interval where most of the energy is released. From figure 4,
for the methane–oxygen detonation at 10 kPa, energy is deposited over a time scale
of 2 × 10−6 s, during which the gas velocity changes by approximately 103 m s−1 due
to expansion. The kinematic viscosity was estimated in the burned products with the
Gordon & McBride equilibrium code using the data given by Svehla (1995), yielding
5 × 10−4 m2 s−1 (see table 1). The resulting Reynolds number is ∼4 × 103, yielding a
range of scales l2/l1 ≈ 2 × 10−3. Since the exothermic layer is typically an order of
magnitude shorter than the ZND induction zone, this yields a Kolmogorov scale
smaller than the ZND induction length by a factor of 104. This would be the required
resolution to correctly capture the turbulent diffusive layers in the detonation wave
structure in numerical simulations.

An equally important length scale is the thickness of a laminar flamelet that can
be established between the reacted gas and unreacted gas along the shear layers and
contact surfaces. This diffusive length scale ldiff can be expressed in terms of the
thermal diffusivity κ and the characteristic time scale of chemical energy deposition
tchem as

ldiff ≈
√

κtchem. (3.5)
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Taking the example considered above at 10 kPa initial pressure with a characteristic
time for energy addition of 2 × 10−6 s, and assuming that the heat and momentum
diffusivities are equal, we obtain a characteristic diffusive scale of 10−2 mm. For
these conditions, the ZND induction length is ∼5 mm, indicating that a characteristic
diffusive layer associated with laminar flamelets, neglecting the effect of turbulence,
is a factor of 2 × 10−3 smaller than the ZND induction length. This length scale is
larger than the Kolmogorov scale by approximately one order of magnitude in this
case.

The above considerations illustrate the magnitude of the diffusive scales in gas
detonations, which would require resolutions exceeding 104 grid points per induction
length to capture the true diffusive layers. Current computational capabilities cannot
address such high computational costs, and typically maximum resolutions fall short
by approximately two orders of magnitude. Hence, as in all previous attempts to
compute highly unstable detonation solutions, the present simulations do not resolve
the fine-scale turbulent dissipation nor the diffusive phenomena associated with
the molecular diffusivities, but instead focus on the larger scales of the detonation
structure. The simulations hence not only necessarily cut off a range of scales which
would otherwise affect the flow field, but also affect the burnout rates by introducing
artificial dissipation at the larger scales. The outcome of this approximation for the
resulting flow-field evolution and structure is analysed below.

3.2. Numerical details

For simplicity, the gas model used in the hydrodynamic simulations assumes a single
reaction converting the reactive gases into products. The gases are assumed to be
perfect, and the product and reactant gases are assumed to have the same specific
heats and molar mass. Although the governing equations are the Navier–Stokes
equations (see the Appendix), as in all previous simulations we solve a discretized
version of the Euler equations:

ρ̂t + ∇ · (ρ̂ û) = 0, (3.6)

(ρ̂ û)t + ∇ · (ρ̂ ûû) + ∇p = 0, (3.7)

(ρ̂ê)t + ∇ · ((ρ̂ê + p̂)û) = 0, (3.8)

(ρ̂α)t + ∇ · (ρ̂ ûα) = ρ̂ ˆ̇w, (3.9)

where the hyperbolic fluxes are augmented by artificial diffusive fluxes, as described
below. The total energy ê (internal, kinetic and chemical) is given by

ê ≡ p̂/ρ̂

γ − 1
+

1

2
ûi ûi + αQ̂, (3.10)

where Q̂ is the chemical energy, α is the reaction progress variable, taken as the mass
fraction of the reactant and the ‘hat’ henceforth denotes a dimensional variable. The
variable notation follows the usual convention. For simplicity, we further assume that
the reactions proceed via a single irreversible step given by Arrhenius kinetics:

ˆ̇w = −k̂α exp

(
− Êa

R̂T̂

)
, (3.11)

where Êa is the activation energy and k̂ a pre-exponential constant set through
appropriate non-dimensionalization. Non-dimensionalization of the governing
equations uses the half-reaction length of the steady ZND model ∆̂1/2 as reference

scale, the ideal detonation velocity V̂CJ as reference velocity and initial density in the
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quiescent gas ρ̂oas density scale. This sets unity time as the time required for the wave
to travel one half-reaction length. Note that for large activation energies, the reaction
zone structure approaches the square-wave profile of figure 4 and the half-reaction
length is approximately equal to the induction length. To ease comparison with
previous studies, our non-dimensional activation energy Ea and heat release Q can
be written in terms of the usual scaled variables θ = (Êa/R̂T̂ ) and β = (Q̂/R̂T̂ )with
the following relations:

Ea ≡ Êa

V̂ 2
CJ

=
θ

γM2
CJ

, Q ≡ Q̂

V̂ 2
CJ

=
β

γM2
CJ

=

(
1 − M−2

CJ

)2

2(γ 2 − 1)
, (3.12)

where MCJ is the detonation Mach number and its relation to the heat release in
(3.12) is given by Chapman–Jouguet theory (Fickett & Davis 1979).

The computation was performed in two dimensions using the µCobra code,
described in Falle & Giddings (1993) and Falle (1991). It is a second-order-accurate
Godunov-type scheme in which the second-order Riemann problems are constructed
from the primitive variables using a quadratic averaging function. An exact Riemann
solver is used wherever necessary and a linear solver elsewhere.

The code uses a hierarchical series of Cartesian grids G0, . . . , GN , so that grid Gn

has mesh spacing h/2n, where h is the mesh spacing on the base grid G0. Grids G0

and G1 cover the entire domain, but the higher grids only occupy regions where
increased resolution is required. Refinement is controlled by comparing the solution
of each conserved variable and also their rates of change on grids Gn and Gn−1. If
either of these errors is greater than given tolerances then the grid is refined to level
Gn+1, n + 1 � N . These conditions can be used to ensure that regions where the flow
is changing rapidly, e.g. shocks, are always resolved to the highest level. Supplemental
criteria are used to ensure that maximum resolution is used in regions of unburned
gas undergoing long induction zones, where the reaction rate is very low (Sharpe
2001). In this paper, we use a base grid with a spacing of 1 point per half-reaction
length and 4 to 6 refinement levels, giving effective resolutions of 32, 64 and 128
points per half-reaction length. The present code was used successfully for detonation
simulations in Sharpe (2001).

In the numerical scheme, artificial diffusion was added to the momentum and
energy fluxes determined from the Riemann solution in order to suppress the Quirk
instability (Quirk 1992) and to remove the entropy oscillations behind slowly moving
shocks, as described in Falle & Komissarov (1996). The viscous stress is defined in
terms of the left and right states in the Riemann problem and the local sound speed:

τ ij = 0.2ρ
√

p/ρ
(
φi

L − φi
R

)
, (3.13)

where φi
L and φi

R are the re-constructed primitive variables (velocity u and temperature
T in the momentum and energy conservation respectively) at the cell interface in the
Riemann problem of the j -direction. Falle & Komissarov (1996) show that in smooth
regions, where the solver is second-order accurate, the resulting diffusivities become
proportional to the square of the grid spacing �x. The highest numerical diffusivities,
however, occur in regions of the flow where discontinuities are present, where the
scheme becomes first order. The resulting kinematic viscosity and heat diffusivity
become proportional to the grid spacing �x (Falle & Komissarov 1996), given by

κ = ν = 0.2
√

p/ρ�x. (3.14)
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Case θVN βVN γ Domain Resolution

A 11 7.5 1.24 6 × 1000 128 pts/∆1/2

B 11 7.5 1.24 12 × 1000 64 pts/∆1/2

C 5.6 10.4 1.2 10 × 1000 32 pts/∆1/2

D 5.6 10.4 1.2 10 × 2000 64 pts/∆1/2

Table 2. Summary of the parameters used in the simulations.

For reference, it is useful to compare the diffusivities given by (3.14) with the real
molecular diffusion coefficients. The reciprocal of the diffusivities in (3.14) is simply
the Reynolds number defined in terms of the reference scales used in the non-
dimensionalization, i.e. V̂CJ and ∆̂1/2. So for example, at the maximum resolution of
128 points, assuming a sound speed of order unity in the products, the numerical
Reynolds number is ∼5 × 103, compared with a Reynolds number computed with the
same characteristic scales for the 10 kPa methane–oxygen experiments of ∼2 × 105 (see
table 1). This illustrates that the diffusivities in the numerical simulations are larger
than in the experiments by at least two orders of magnitude. All Euler schemes will
have inherent artificial diffusion with large disparities between the numerical diffusion
and real diffusion at such resolutions, as was also estimated in the previous section
based on length scale estimates of real diffusive phenomena and current resolutions
used in simulations.

The thermo-chemical parameters were chosen to represent methane–oxygen
detonations (Radulescu et al. 2005), corresponding to the experiments shown above.
The effective activation energy, heat release and isentropic exponent are taken as
θVN = 11, βV N = 7.5 and γ = 1.24, corresponding to θo = 63.7 and βo = 43; where
the subscripts “o” and “VN” refer to the initial state and the von Neumann shock
state of the ZND model, respectively. The computational domain extended to the
back wall where the detonation was initiated. We hence solved explicitly the entire
computational domain including the unsteady Taylor expansion wave developing
behind the detonation front. The length of the computational domain was set to
1000 and the width was set to permit a 2-mode detonation (equivalent to the 6 kPa
experiments above). This corresponded to setting the height of the two-dimensional
channel to 12, with a maximum resolution of 64 points per half-reaction length. A
narrower domain width of 6 was also used at a higher resolution of 128. We will
denote these two cases as case A and case B (see table 2). Typical run times for a
simulation on a personal computer at the highest resolution was of the order of a few
months, although the averaging procedure required a re-run of the solution with the
average detonation velocity computed in the first run. The detonation was initiated
with a high-pressure region of width 1, pressure 50 and density 1 placed at the
origin of the domain. A one-dimensional simulation was run for the early part of the
detonation decay from the highly overdriven state until it reached x = 120. These one-
dimensional profiles obtained were used as initial conditions for the two-dimensional
simulations. A sinusoidal perturbation was then added to rapidly establish the cellular
instability.

3.3. Global features

Figure 8 illustrates the cellular structure of the detonation wave obtained for cases A
and B, obtained by recording the integrated heat release rate over time at each fixed
point of the computational domain. The highest heat release rate occurs near triple
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Figure 8. Time-integrated exothermicity illustrating the cellular structure for θo = 63.7
detonations: (a) case A, and (b) case B.

points and hence this acts as a diagnostic for recording the tracks; see Sharpe & Falle
(2000) and Sharpe (2001) for further details. The method is analogous to the ‘open
shutter’ photographs obtained experimentally by the time-integrated luminosity tech-
nique (e.g. Radulescu & Lee 2002). For both cases, the initial perturbation gives rise to
a fine cellular structure. Initially, while the wave is still overdriven, small cells appear,
which then grow as the wave becomes self-sustained. In the wider domain of case A,
the cellular structure is very irregular, with many modes interacting nonlinearly. The
detonation appears to change its propagation mode between a mode 1, a mode 2, and
a complex long-wavelength failure and re-initiation mode with intermittent bursts of
new cells formed during regions of apparent disappearance of the main detonation
structure. As discussed in Radulescu et al. (2005), these intermittent events may even
quench the detonation altogether in narrower domains. This was the case for a domain
width of y = 6 in the 64 points resolution case, presented in Radulescu et al. (2005).
At higher resolution in the y = 6 domain width (case B), the detonation propagates
with a preferred mode 1 structure and a significant amount of substructure.

Figures 9 and 10 show the evolution of the flow field for cases A and B during
the time interval in which a detonation propagates a distance of approximately
20 half-reaction lengths. The temperature and pressure profiles are shown, which
permit identification of the gasdynamic evolution and reaction zones separating gases
undergoing their induction period from hotter burned gases. Case B of figure 9
corresponds to a single main cellular mode. In the first frame, the triple point is
propagating upwards. The bottom part of the leading shock is the Mach shock,
while the upper part is the weaker incident shock. Due to the large temperature
sensitivity of the reaction rates, the gases shocked by the incident shock remains
unreacted and accumulate in a growing tongue shape. As the triple point reflects
from the wall in the second frame, a new Mach shock is formed near the top wall and
a reflected shock propagates downward. The lower portion of the leading shock is
now the decaying incident shock. As the new triple point propagates downward, gas
accumulates behind this incident shock as a new layer of unreacted gas. In the fifth
frame, the triple point reflects off the bottom wall, and a new Mach shock is formed,
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Figure 9. Evolution of the temperature (a) and pressure (b) during one outer cell cycle for
θo = 63.7 (case B); frames at t = 701.52, 705.07, 708.68, 712.17, 715.77, 719.45, 723.21.

which now propagates up. The rapid exothermicity behind the Mach shock and
imbalance with the very weak exothermicity behind the incident shock sustains the
frontal cellular structure. A sub-structure is also observed superimposed on the main
cellular structure, characterized by smaller tongue-shaped structures and triple shock
interactions. The origin of this secondary structure was found to correlate mainly with
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instabilities in the reactive Mach shock at early times, before the decoupling of the
reaction zone. Hydrodynamic instabilities also disturb its structure, such as the vortex
roll created after the triple-point collision with the wall (or with another triple point).

Globally, since the induction delay of the gas shocked by the incident shock is much
longer than the gas shocked by the Mach shock, a layered system is formed behind
the detonation front consisting of alternating reacted and unreacted gases, which
are convected with the material velocity. These entropy gradients at the boundaries
of reacted and unreacted gases maintain the vorticity imparted to them by the
cellular frontal structure and deform further through both nonlinear hydrodynamic
interactions with transverse pressure waves and through energy addition by reaction.
The Kelvin–Helmholtz instability in the shear layers and the Richtmyer–Meshkov
instability occurring during the shock refraction at the density interfaces make a
reconstruction of the detailed evolution difficult. The resulting randomization of the
pressure field is illustrated well in the pressure field evolution, which particularly shows
the scattering of the shock system during the interaction with density interfaces at
the pocket boundaries. These are very similar to the shock–flame interactions studied
extensively by Khokhlov, Oran & Thomas (1999) in the context of deflagration-to-
detonation transition studies.

The same physics also operate in the sequence of events illustrated for case A,
shown in figure 10, although the details are significantly more complex due to the
supplementary active modes in the wider domain. The sequence resembles qualitatively
the experimental sequence of figure 7. The temperature and pressure sequence can
also be followed on the cellular dynamics of figure 8. In the first frame, the main
detonation triple point has just reflected on the top wall, leaving a layer of unreacted
gas behind. There is also a weaker mode, which has just reflected on the bottom
wall. The first stronger one gives rise to a new unreacted tongue while the triple
point propagates downward. Note the instabilities on the shear layer. During this
time, the Mach shock structure and reacting gases behind develop their own cellular
instabilities, with their own triple-shock interactions, unreacted tongues and unburned
pockets of smaller dimension. For example, in the fifth frame, four triple points can
be clearly seen on the surface of the main Mach shock. These can also be clearly seen
on the cellular record of figure 8.

The weaker mode appearing on the bottom of the first frame is interesting in its
own right. Since it is much weaker, its reflection from the bottom wall does not make
the leading shock strong enough to radically accelerate the burning rates. Instead,
only a small hot spot is created, surrounded by unreacted expanding (and cooling)
material. This reacted spot is then convected downstream in the unreacted tongue.
Although less frequent, the present calculations also capture pockets of burned gas
within pockets of unreacted gas engulfed in reacted gases.

3.4. The front dynamics

The pulsations of the front were recorded along the line y = 0. From local pressure
measurements behind the leading shock the velocity of the wave was deduced via the
Rankine–Hugoniot relations. An excerpt of the velocity record is shown in figure 11
for both cases A and B on the interval 700<x < 1000. The velocity pulsations
can be correlated with the cellular dynamics of the front illustrated in figures 8
to 10 for the flow-field evolution. The sudden increases in detonation velocity or
‘spikes’ correspond to the triple shock reflections, while the low-velocity excursions
correspond to the decoupled stages of the propagation when the incident shock is
much weaker than average. The main modes can be correlated with the largest sub-CJ
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Figure 11. Velocity of the leading front recorded along the bottom wall of the
computational domain for case A (a) and case B (b).

excursions. Secondary modes can also be observed, corresponding to the secondary
cell structure observed on the detonation front, with magnitudes and frequencies of
large variability. We have evaluated a power spectrum of the full velocity time series,
but were not able to isolate any preferred frequency of oscillation of sub-λ oscillations,
although the spectrum is quite noisy due to the small amount of data available. Also
noteworthy from the velocity signal is the increased variability in the signal for case
A, corresponding to the wider domain. Consistent with the cellular records above, the
increased irregularity of the structure leads to a very chaotic signal.

Since the excursions of the leading shock strength from the mean directly affect the
local ignition delays, it is worthwhile investigating the probability density function
p.d.f. for the leading shock velocity. First, we determined the interval over which the
wave is initially overdriven, so that we can choose an interval devoid of this initial
transient. Using the time-of-flight data of each minimum in wave velocity, we first
determined the time-average velocity of the leading shock for successive outer cell
cycles, as shown in figure 12 for case B. After x ∼ 300, the wave appears to have
approached a stationary regime. Figure 13 shows the p.d.f. of lead shock velocity
recorded along the bottom wall (y = 0) in the interval 300 � x � 1000. It represents
the fraction of time the lead shock has the specified value that departs from the
ideal detonation velocity of V = 1. To obtain the p.d.f., the velocity time series was
interpolated at equal time intervals in the stored data. The resulting p.d.f. is found
in good agreement between the two runs. The first moment of the distributions,
corresponding to the time-average detonation speed, is found to agree with the ideal
value within an error of ∼1%.
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Figure 13. Probability density function of the leading shock velocity obtained from the shock
velocity time series along the bottom wall for cases A, B, C, and D; broken line shows a
power-law dependence with exponent −3. (Cases C and D are described in § 4.)

The shape of the p.d.f. is also interesting. The distribution of shock velocities is
highly skewed towards sub-CJ velocities with a minimum of approximately 0.7 of
the ideal CJ velocity. The peak of the distribution occurs at approximately V = 0.8,
consistent with the observations of Austin (2003). This strong skewness can be easily
accounted for by the fact that the shock velocity inside the cell always preferentially
decays, with very rapid accelerations through triple point interactions. Since the shock
spends more time decaying than amplifying, this naturally gives rise to more frequent
shock velocities below the average. The overall shape of the p.d.f. can also be inferred
by assuming that the local shocks inside the cells decay approximately as cylindrical
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Taylor–Sedov blast waves (see, for example, Thomas & Edwards 1983 and references
therein) with V ∼ t−1/2, from which it can be shown that the corresponding p.d.f. of
V varies like p.d.f. (V ) ∼ V −3, in good agreement with the data shown in figure 13.

3.5. The induced exothermicity and local flow-field details

We further analysed the local flow field in the computations to determine how the
leading shock pulsations and the local details of the flow field affect the ignition
delays of the processed gas. We have chosen one particular frame and analysed the
flow field inside in detail. Figure 14 shows the pressure, density, temperature, reaction
progress variable and velocity profiles at one instant in time. This frame is part of the
sequence shown in figure 9. The frontal part corresponds to a strong Mach shock at
the top portion of the front, while the bottom part is the weaker incident shock. The
pressure (figure 14a) and velocity profiles (figure 14e and f ) illustrate how the triple-
shock structure is maintained, and the direction of the flow behind the transverse
shocks and along the shear layer associated with the triple-shock interaction. The
density (figure 14b) and temperature (figure 14c) profiles illustrate the position of
the unreacted high-density and cool gases undergoing their chemical ignition process.
The distribution of the progress variable α in figure 14d also shows that these pockets
have a composition very close to unreacted, i.e. α = 1. The interested reader can also
infer more easily accessible quantitative information from the one-dimensional cuts
shown along the lines x = 840.8 and y = 1.5.

Using the instantaneous field of temperature, the local ignition delay time was
estimated by using equation (2.1). The resulting ignition delay field, i.e. the time
remaining under steady conditions until the diffusionless explosion time, is shown in
figure 15. For reference, the ignition delay behind a shock moving at CJ velocity, in
our non-dimensional scales, is

te,VN
∼= t1/2 =

1

uVN

= ρVN = 7.6. (3.15)

By inspection of figure 15 and the one-dimensional cuts shown, we see that all the
pockets of gas have ignition delays 1 to 2 orders of magnitude longer, and reach
values ranging from 100 to 1000, during which the lead front would propagate 100
to 1000 half-reaction lengths. The horizontal cut in figure 15 also shows that the
compression by the weak transverse shocks does not shorten the ignition delays of
the pockets sufficiently to permit rapid ignition.

The discrepancy between the observed burn out of the pocket on time scales of
20 to 40 and the expected delays based on the diffusionless ignition mechanism is
accounted for by the additional diffusion introduced by the numerical scheme, as
described above. We investigated its effect on the ‘laminar’ burning rate of the pockets
in separate one-dimensional calculations, aimed at determining the burning rate of
the pockets from diffusive phenomena inherent in the scheme. The calculation was
initialized with a discontinuity in density separating initially reacted and unreacted
gases. The initial conditions were chosen as representative of the pocket states
(see figure 14), by setting the initial pressure at 0.6 uniformly across the domain
and the density to 7.0 and 2.0 in the unreacted and reacted gas respectively. The
ensuing numerical flame speed was measured by tracking the location of the flame
with respect to the fluid velocity ahead of the flame in the non-reacted material. The
calculations were performed for grid resolutions ranging between 32 and 1024 points
per half-reaction length. The results are shown in figure 16. For the thermo-chemical
parameters used, the flame speed is given approximately by 0.14�x0.7. The power-law
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Figure 14. Instantaneous pressure (a), density (b), temperature (c), reactant concentration (d),
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exponent of the dependence on grid resolution is bracketed well by the values
deduced from the numerical diffusivity dependence on grid resolution in Falle
& Komissarov (1996) (see equation (3.13)). Since the flame speed scales with the
square root of diffusivity, a linear dependence of flame speed on grid spacing
would correspond to a second-order-accurate solution at the flame discontinuity,
while a square root dependence corresponds to a first-order-accurate solution at
the discontinuity. The results also demonstrate well how the numerical flame speeds
increase with decreasing resolution, which is fully consistent with our resolution
studies (see below), which showed a more rapid burnout of the pockets at lower
resolutions.

We hence can use the characteristic flame speed computed above to determine
how diffusive burning affects the burnout of the pockets on the time scale of their
diffusionless ignition in the simulations. For the resolution of 128 points, the numerical
flame speed is ∼0.004. Assuming a characteristic pocket size of unity, the burnout time
of a one-dimensional pocket consumed on both sides by numerical flames at the pocket
boundaries separating the burnt from unburnt gas is thus 0.5/0.004 =125. This time
is comparable with the characteristic ignition delays determined above. Furthermore,
shorter ignition times via numerical diffusive mechanisms are expected, since the
pocket morphology is multi-dimensional, making our estimate a conservative one.
Richtmyer–Meshkov and Kelvin–Helmholtz instabilities further disrupt the pocket
morphology and increase their surface area, which leads to a decrease in the burnout
time through surface flames, as illustrated above.

It is also useful to compare the results obtained numerically with the experimental
flow field. It is found that the pockets in the numerical simulations, although burning
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Figure 16. Laminar flame speed dependence on grid spacing for θo = 63.7; dashed line,
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faster from surface diffusion, still burn slower than in the experiments by a factor
of approximately 5, in spite of the fact that diffusivities in the numerics are larger
than the real ones by two orders of magnitude. This may be ascribed to the more
important role of turbulent diffusive phenomena in the real experiments, as suggested
by the much broader range of scales expected in the experiments than those captured
in the numerical simulations.

3.6. Average structure

Although the true fine diffusive scales are not attainable in the simulations and a
well-characterized turbulent regime is not established owing to large-scale dissipation,
we are interested in determining the mean one-dimensional profiles corresponding to
such unstable detonations and establishing the role of the fluctuations from the mean
large-scale detonation structure. To this effect, the results of the numerical experiments
presented above were used to obtain the corresponding one-dimensional time- and
space-average representation of the flow field through the detonation wave. We use
Favre-averaging, which takes an average weighted by the local density, to account
for the changes in density (and momentum and energy density) at different times and
positions in space (Favre 1965). Favre-averaging in time and space in the frame of
reference of the average detonation motion represents seeking the average properties
of many statistically similar Lagrangian fluid elements traversing the detonation wave
structure. The mathematical formulation of the Favre-averaging procedure is given
in the Appendix.

The spatial and temporal averaging was conducted in the frame of reference moving
with the average velocity of the wave. The averaging procedure in the y-direction and
in time was performed in the interval 834 < x < 999, i.e. over 6 cell cycles for both
simulations. If x ′ denotes the coordinate in the frame of reference moving with the
average detonation velocity, W is the width of the window for y-averaging and τ is
the total time step in averaging, the pressure and density are averaged in the usual



60 M. I. Radulescu, G. J. Sharpe, C. K. Law and J. H. S. Lee

way in time and space:

p̄(x ′) =
1

τ

∫ to+τ

to

1

W

∫ w

0

p(x ′, y, t) dy dt, (3.16)

ρ̄(x ′) =
1

τ

∫ to+τ

to

1

W

∫ w

0

ρ(x ′, y, t) dy dt . (3.17)

The velocity and reaction progress variable α are Favre-averaged by using the result
of (3.17):

ũ(x ′) =
1

τ ρ̄(x ′)

∫ to+τ

to

1

W

∫ w

0

ρ(x ′, y, t)u(x ′, y, t) dy dt . (3.18)

α̃(x ′) =
1

τ ρ̄(x ′)

∫ to+τ

to

1

W

∫ w

0

ρ(x ′, y, t)α(x ′, y, t) dy dt . (3.19)

In the averaging procedure, the time elapsed between successive stored models was
applied to weigh each model in the time-average process. We used the entire domain
width for y-averaging (W = 6 and 12 for cases B and A respectively).

From above, the average detonation velocity was the ideal CJ value estimated with
an uncertainty of ∼1%. For this reason, the spatial and temporal averaging was
conducted in the reference frame moving with the CJ velocity. The average pressure
p̄, density ρ̄, particle velocity ũ (in the wave frame), reactant concentration α̃, and
flow Mach number are shown in figure 17 for both cases A and B, along with the
ideal profiles of the steady ZND structure. First, good agreement is found between
cases A and B in terms of the global features, as was also the case for the global
flow field obtained above. Close inspection, however, shows subtle differences. The
average thermodynamic state in the higher resolution run seems to approach the CJ
state at a slower rate. In both cases however, the CJ state is attained at a distance
of approximately 40–60, i.e. 50 times longer than in the ideal ZND model. This
relaxation to the CJ state was also longer than the burnout time of the pockets, as
indicated by the decay of the reactant progress variable α, which occurs on the order
of 20 half-reaction lengths.

The flow Mach number in the detonation frame was obtained by assuming that the
mean sound speed does not depend on the intensity of fluctuations and is given by

c̃2 ≡ γ p̄/ρ̄. (3.20)

In an average sense, it is found that the flow becomes sonic at a distance of
approximately 40 to 60. It thus seems that an average sonic surface where M = 1
appears at a distance longer than the chemical equilibration, but at a location where
the average thermodynamic state of the gas approaches the CJ state.

The Hugoniot diagram representing the mean trajectory in p, 1/ρ space is shown
in figure 18 for case B. Due to the large fluctuations of the front and the flow within
the detonation structure, the state of the particle differs considerably from the ideal
Rayleigh line, dictated by one-dimensional conservation of momentum, implying the
presence of fluctuations. Nevertheless, as these fluctuations decay, the average path
approaches the burned Hugoniot at the ideal CJ point, within the accuracy of our
results.

To gain more insight into this relaxation towards equilibrium, which may be
responsible for the delayed sonic surface, we monitored the decay of the mechanical
and thermal fluctuations from the mean profiles. Following the motion of an



The hydrodynamic structure of unstable cellular detonations 61

1.0

0.5

0
80 60 40 20 0 80 60 40 20 0

80 60 40 20 0

1.0

0.5

0
80 60 40 20 0

1

0.1

0.01
80 60 40 20 0

8

6

4

2

1.2

1.0

0.8

0.6

0.4

0

p

u M

x

x

α

ρ

Figure 17. Favre-averaged pressure, density, particle velocity, Mach number and reactant
concentration profiles for θo = 63.7; broken lines, case A; (solid lines), case B; dotted lines,
ZND model.

averaged fluid element traversing the detonation wave (see the Appendix), its average
momentum and energy are conserved according to

ρ̄ũ2 + p̄ + f = V̄ 2 +
1

γM2
CJ

, (3.21)
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1

2
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The right-hand sides represent the momentum and energy transported into the
detonation structure by the fresh gases, while the left-hand sides represent the
instantaneous average values. The explicit dependence of the mechanical fluctuation
f and thermal fluctuation g/V̄ in terms of fluctuating quantities of pressure, velocity
and reaction variable are given in the Appendix (equations (A 31) and (A 32)). Here
we are only concerned with the equilibration of the total fluctuations. The terms
f and g/V̄ represent the residues from the momenta and energies from the mean
motion and are explicitly described in the Appendix. They are obtained by evaluating
all the terms in (3.21) and (3.22) from the average quantities and subtracting them
from the total values on the right-hand-side of (3.21) and (3.22).

The various terms appearing in the conservation of momentum (3.21) and energy
(3.22) are shown in figures 19 and 20 for both cases A and B. First, both cases appear
to agree well. The momenta partition shows that the mechanical fluctuation f has
decayed from approximately 10% close to the front to less than 0.5% of the total at
the sonic surface. Likewise, the thermal fluctuations shown in figure 20 also decayed
to less than 1% at the sonic surface. Note also that the sonic surface is established
after the burnout of the pockets. It thus appears that the location of the sonic surface
is best correlated with the decay of fluctuations. Due to limitations in the accuracy of
the statistics in the proximity of the sonic surface and to limitations in the physical
validity of the grid-dependent fluctuations, we cannot draw more accurate conclusions
about the thermodynamic conditions near the sonic surface.

The appearance of the sonic surface after the burnout of the pockets is consistent
with the previous experimental findings of Edwards et al. (1976), who estimate the
location of the sonic surface at several cell sizes λ behind the front. Edwards et al.
suggest that the dissipation of the energy associated with the transverse wave structure



The hydrodynamic structure of unstable cellular detonations 63

100
(a)

(b)

(c)

(d)

10–1

10–2

10–3

80 70 60 50 40
x

30 20 10 0

Figure 19. Terms in the averaged momentum conservation for case A (broken lines) and
case B (solid lines): total momentum 1/γM2
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is responsible for this delay in the establishment of a sonic surface, but quote values of
turbulent energy much higher than estimated in the present study from the numerical
simulations. Qualitatively, the results of the present study support their hypothesis
for the delayed sonic surface. A quantitative comparison between experiment and
simulations is not possible at present due to the limitations in capturing correctly
the turbulent energy amplitude and its dissipation. Such a comparison would require
the proper calculation of the turbulent dissipation behind the detonation wave, to be
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performed in three dimensions, such that the Kolmogorov cascade and the correct
small-scale dissipative processes, apart from imbedded shocks, are properly addressed.
However, this would represent a formidable computational challenge.

4. The structure of weakly unstable detonations
The second series of computations focused on detonations for which the chemical

reaction rate is much less sensitive to temperature fluctuations. For such detonations,
the detonation cellular dynamics are more regular. These have been extensively
studied in the past in numerical simulations (e.g. Sharpe 2001; Deiterding 2003; Hu
et al. 2005) and experiments (Edwards et al. 1970; Pintgen et al. 2003). We wish
however to determine their average detonation structure in the same framework as
above. This can help us draw conclusions by comparison with the results obtained
above. The activation energy was reduced by approximately a factor of 2 to a value
of θVN = 5.6 (corresponding to θo = 27). The heat release and isentropic exponent
were set to βVN = 10.4 (or βo = 50) and γ = 1.2. These parameters correspond to
one-dimensional detonations characterized by a single unstable nonlinear mode of
pulsation, for which the activation energy is lower than the critical value giving rise to
chaotic dynamics (Ng et al. 2005a). This range of activation energies is characteristic
of mixtures such as hydrogen, acetylene and carbon-monoxide at low pressures
(Radulescu 2003; Austin et al. 2005; Ng et al. 2005b), which are characterized by
regular cellular structures. For these mixtures, the experimental results indicate that
turbulent diffusive burning is not expected to play a major role (Radulescu & Lee
2002; Pintgen et al. 2003), unlike the highly unstable cases, and hence we have a
better chance of capturing the main features of this regular cellular structure in the
numerical simulations.

The width of the computational domain was set to a value of 10, to isolate a
single-mode detonation. The length of the domain was set greater than 1000. Due
to the smaller sensitivity of the reaction rates, it was found that the detonation can
be initiated much more easily. A high-pressure region of width 2, pressure 5 and
density 1 was used to directly initiate the detonation via a strong reacting blast wave.
The strength of the ‘igniter’ was chosen to ensure the most direct transition to a
self-supported detonation; a larger amount of energy would overdrive the wave over
longer distances, while a weaker source would either prevent initiation or give rise
to long initiation transients. Resolution levels of 32 and 64 points per half-reaction
length were used, henceforth denoted as cases C and D. The numerical technique was
the same as described above.

Figure 21 shows the cellular structure obtained by the time-integrated exothermicity
for the two cases C and D. This illustrates the very similar dynamical behaviour
obtained in both cases, with the detonation front having a very regular quasi-periodic
cellular structure. Note that apart from a different initiation transient, which is
affected by resolution, both resolution levels provided the same wave dynamics.
Figure 22 shows the detonation velocity profile recorded on the bottom wall of the
domain. Likewise, a very regular pulsating profile is obtained, which appears to be
stabilized to a limit-cycle behaviour at distances greater than approximately 400. A
low-frequency modulation is still observed with wavelength equal to approximately
10 cell cycles, which may be due to the initiation transient. Note also that the results
of both resolutions appear to have converged to the correct period and amplitude,
although the growth rate of the instability during the initiation transient differs, and
creates a lag in the pulsations. Also shown in figure 22 are the cell-averaged velocities
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Figure 21. Time-integrated exothermicity illustrating the cellular structure for the θo = 27
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Figure 22. Velocity of the leading front recorded along the bottom wall of the computational
domain (a) and (b), cell-averaged velocity for cases C (broken line) and case D (solid line).

obtained from the time-of-flight data at each cell apex. We chose the last 10 cell
cycles to compute the time-averaged detonation velocity by simply taking the ratio
of the distance travelled over the time required to travel that distance. The average
detonation velocity was found to be 1% and 0.8% below CJ for respectively the
64-point and 32-point resolution cases, estimated with a standard deviation of 1.6%
from the individual cell time-averaged values.

The p.d.f.s of the velocity signals for both cases C and D are shown in figure 13.
They seem to agree very well with the p.d.f.s of the highly unstable detonation,
with most probable shock velocity of V * = 0.8 and minimum of 0.7. Some of the
high-velocity excursions observed for the unstable detonations are not reproduced
however.
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4.1. The flow field

Figure 23 shows four frames in the evolution of the temperature and pressure profile
during a time interval of approximately 20, corresponding to half a cellular cycle. It
is also interesting to follow the same evolution on the cellular record of figure 21 and
the velocity of the leading shock measured on the bottom wall shown in figure 22.
In the first frame, the triple point is approximately in the centre of the channel and
is propagating up. In the last frame, the triple point is propagating down. At this
point, the flow field is almost identical to the first frame, but reversed horizontally,
and marks the end of half of a cell cycle.

The temperature field shows the formation of unreacted pockets, which form by
the same mechanism as considered above. The pressure field illustrates the shock
structure. The global details of the flow field computed are found in good agreement
with experimental results of Edwards et al. (1970) of mode 1 detonations in carbon-
monoxide with oxygen, which showed with unprecedented clarity for the first time
the unburned layers of gas cut off from the main front following the triple shock
collision with a wall, although these were misinterpreted at that time.

In the first frame, a growing tongue of gas extends downward, corresponding to
gas shocked by the incident and reflected shock at an earlier time. This layer extends
as a counterclockwise vortex at the bottom with alternating layers of gas shocked
by the Mach stem and gas shocked by the incident shock, which is reacting much
slower. This gives rise to a roll-up structure. In the second frame, the triple point has
reached the top wall and the rollup structure has grown, as more gas reacted and gave
rise to volumetric expansions. Between the second and third frame, the triple point
reflected from the top wall, resulting in two forward and backward jets of material.
In the forward motion, a new Mach stem is formed, along with the vortex described
above. In the backward direction, the previous tongue is separated from the front as
an unreacted pocket, which is deformed by the jetting action and the passage of the
reflected shock. As the flow field evolves, the unreacted pocket falls further behind
the main front, convected at the local fluid velocity. It is consumed at a distance of
approximately 15 and after a time of approximately 30 after first being shocked by
the incident shock of the front. Its evolution can be traced by taking advantage of
the quasi-periodicity of the flow without too much difficulty. Figure 23 also shows
the evolution of the simultaneous pressure field, illustrating the transverse pressure
waves equilibrating downstream, the details of the shock refraction process at the
pocket boundaries, the reflected pressure waves at the tongue interfaces and the triple
point reflection process at the wall. Even in this regular-structure detonation wave,
the details of the interactions are very complex.

One interesting feature observed in the simulations, but not in the experiments of
Edwards et al. (1970) on the detonation structure, is the result of the interaction of
the vortex rings created by transverse wave collision with the gases behind the Mach
stem and the resulting formation of a ‘jelly-roll’-like structure of unreacted gases
wrapped by hot reacted and reacting gases. The origin of this discrepancy is not clear
at present, although it may be a signature of the important role of diffusive processes
in the fine-scale alternating layers of material driven by triple shock collisions.

In these simulations, although small-scale dissipation is still active, most of the gas
reacts after its diffusionless ignition delay. The spatial distribution of the instantaneous
ignition delay is shown in figure 24, obtained from the temperature field of the first
frame of figure 23 via equation (2.1). The longest ignition delay corresponds to the gas
shocked by the incident shock, with values ∼30. The gas in the unreacted tongue and
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Figure 23. Evolution of the temperature (a) and pressure (b) during half a cell cycle for
θo = 27 (case D); frames at t = 610.03, 615.14, 620.21, 625.29, 630.45.

in the separated pocket has ignition delays of less than 10. For reference, the ignition
delay in the steady wave is te,VN = u−1

VN = ρVN =8.7. Considering the temporal evolution
of the flow field illustrated in figure 23, we see that all the unburned gas ignites with
the appropriate diffusionless times, as expected. These considerations indicate that
diffusion effects play a minimal role in such weakly state- sensitive detonations.
In contrast with the simulations above for the highly unstable detonations, this is
due to the fact that in spite of the fluctuations, the characteristic ignition delays
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are still much shorter than those over which the prescribed (numerical) diffusion
operates.

We also verified the convergence of our results. Figure 25 shows the temperature
and pressure evolution obtained at a lower resolution (case C), at a time corresponding
to approximately the same stage in its evolution as the first frame of figure 23. In spite
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of the global retardation of the entire cellular cycle (originating from the initiation
transient), we see that most features agree between the two sets of simulations, with a
slightly higher rate of reaction in the lower-resolution run, consistent with the effect
of dissipation on the burning rates. A more quantitative analysis is performed below
when comparing the average reaction rates.

4.2. Average profiles

The average reaction zone structure for both the 32-point and 64-point resolution
runs was determined in the last 10 cell cycles. At each successive time step, the
y-averaged solution was obtained. The time-average solution was then continuously
updated at each successive time step. The average wave velocity used was 0.99 and
0.992 for the 64- and 32-point resolution levels respectively, as determined above. The
Favre-averaged reaction zone profiles for pressure, density, velocity (in the coordinate
system moving with the average speed of the detonation), reaction progress variable
and flow Mach number are shown in figure 26 along with the ideal ZND solution.

Close inspection of the average reactant concentration profiles for the different
resolutions shows that the reactant is consumed somewhat slower in the higher-
resolution run. This is consistent with the effect of numerical dissipation controlling
the burnout rate of the pockets from the edges at lower resolutions. The slower
burnout rate in the higher-resolution run, which approaches the true diffusionless
burnout rate, is responsible for the lower equilibration rates of the various profiles
towards the CJ values. For the 64-point resolution simulation, an average sonic
surface is developed at a distance of approximately 21, while at the lower resolution,
the sonic surface appears at a distance of ∼10. In both cases however, the average
pressure, density and velocity approach the ideal CJ state at the sonic plane.

A second feature characteristic of the average profiles is the compression wave
travelling behind the sonic surface. Over the interval used for the averaging, we find
that the position of this average compression wave is stationary, hence propagating at
a velocity comparable with the average detonation in the absolute frame. Its position
is also found to be quite different in the two resolution simulations. The origin of
this compression wave may be due to a number of reasons, possibly a consequence
of the initiation transient, which is different in the two simulations owing to the
growth rate of the cellular instability. Nevertheless, by virtue of the sonic surface, it is
outside the average domain of influence of the leading front, and does not influence
the detonation propagation.

The average path taken by a fluid element traversing the detonation structure in
the (p, ρ−1)-plane from the initial state to the sonic surface is shown in figure 27
for the higher-resolution simulation. In spite of the weaker instability, the structure
still departs significantly from the ideal structure. This may be due to the fact that
the shock pulsations do not differ considerably, as indicated by the p.d.f.s of the
lead fronts. However, the rate of equilibration is significantly different, as indicated
above. From the inset of figure 27, one can see that the gas state at the sonic surface
lies somewhat below the ideal CJ state, suggesting that perhaps the detonation is
of the eigenvalue type (Fickett & Davis 1979), corresponding to non-equilibrium at
the sonic plane. To verify whether this is the case, the decay of mechanical and
thermal fluctuations in the Favre-averaged conservation equations for momentum
(3.20) and energy (3.21) were estimated in the same manner as for the highly unstable
detonations. The various terms in the averaged one-dimensional momentum equation
are shown in figure 28 for two different resolutions. The terms appearing in the energy
equation are shown in figure 29. The magnitude of the various terms is comparable
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concentration profiles for θo = 27; broken line, case A; solid lines, case B; dotted line, ZND
model.

with those of the highly unstable detonation of figures 19 and 20. It is found that
the magnitude of the mechanical fluctuation f has a maximum of 30% at the front
and decays to approximately 1% at the sonic plane. The magnitude of the turbulent
energy g/V̄ estimated from the difference of the total energy available and the mean
enthalpy, kinetic and chemical energies peaks at approximately 5% of the total energy
and slowly decays to approximately 0.5% at the sonic plane. A negligible fraction
of chemical energy is observed at the sonic plane. The same levels in the fluctuating
terms are also observed for the lower-resolution case, although the relaxation rates
are more rapid, consistent with the increase dissipation at lower resolutions.
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case D (solid lines): total momentum 1/γM2

CJ + V̄ 2(curve a), ρ̄ũ2 (curves b), p̄(curves c) and
f (curves d).

At the higher resolution, the results also illustrate that the sonic plane is established
at a somewhat greater distance than where the chemical energy release ends. However,
the difference is not as large as for the high-activation-energy detonations treated
above. This may be due to differences in the form of exothermicity profiles in the two
cases. At high activation energy, the one-step Arrhenius reaction is characterized by
an exothermic period of much shorter duration than for the lower activation energy,
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Figure 29. Terms in the averaged energy conservation for cases C (broken lines) and D (solid
lines): total energy 1/M2

CJ (γ − 1) + Q + V̄ 2/2 (curve a), enthalpy γ p̄/ (ρ̄ (γ − 1)) (curves

b), kinetic energy ũ2/2 (curves c), chemical energy ãQ (curves e) and turbulent energy
g/V̄ (curves d).

keeping other scales constant. In this sense, the dissipation of fluctuations in the
present low-activation-energy simulations may be masked by the slow exothermicity
of the chemical process.

Since the detonations considered here were much more regular, permitting much
more resolved statistics for each resolution, we also verified if the detonations obtained
are compatible with the generalized CJ condition in the presence of source terms
due to generation and dissipation of fluctuations (Nikolaev & Zak 1989), in direct
analogy with the work performed on eigenvalue detonations in the presence of other
source terms (see Fickett & Davis 1979 for details). Differentiating the conserved
mass, momentum and energy conservation equations following an averaged fluid
particle (equations (A 31) and (A 32) in the Appendix) with respect to time, upon
re-arrangement, one obtains the so-called Master equation for the fluid element
acceleration:

ρ̄
dũ

dt
=

γ ũ(df /dt) − (γ − 1) (dg/dt) − (γ − 1) V̄ Q(dα̃/dt)

c̄2 − ũ2
≡ Φ

η
, (4.1)

where the time t is taken as independent variable instead of the spatial location of
a fluid element x. This equation represents the effect of the relaxation of mechanical
fluctuations, thermal fluctuations and chemical fluctuations which act to accelerate
or decelerate the averaged low in the reaction zone, and hence compete in the
attainment of the sonic condition. By inspection, the solution is singular at the sonic
surface, where η = 0. The unique solution for the reaction zone structure is obtained
by requiring that simultaneously Φ = 0, constituting the generalized CJ criterion. The
generalized CJ criterion is satisfied for only a specific detonation wave velocity, which
is the ‘eigenvalue’ that will permit a singularity-free structure.

Figure 30 shows the thermicity Φ and the three terms of equation (4.1) for both the
32-point per half-reaction length and 64-point per half-reaction length simulations. It
is found that the chemical and thermal relaxation effects compete with the mechanical
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Figure 30. The terms in the total thermicity (Φ) equation for cases C (a) and D (b):
[γ ũ(df /dt)] (lines i), [−(γ − 1)(dg/dt)] (lines ii), and [−(γ − 1)V̄ Q(dα̃/dt)] (lines iii).

fluctuation decay, consistent with the sign of the terms in equation (4.1) (see also the
Appendix). The terms balance out at approximately x ≈ 20 and 13 for the 64- and
32-point simulation respectively, in good agreement with the position of the sonic
surface established at x ≈ 21 and 12 respectively. Thus, the generalized CJ criterion
appears to be verified for these weakly unstable detonations. Whether the rear of
all cellular detonations is always dictated by an eigenvalue structure is not clear
at present and clearly much more-resolved detonations would be required, with the
physical turbulent transport replacing the artificially high diffusivities used in the
present simulations.

5. Further discussion
The detailed comparison of real and numerical simulations of highly unsteady

detonations have revealed that the average chemical thickness observed in the
experiments cannot be rationalized based on diffusionless ignition alone. Even when
supplementary diffusive fluxes were introduced in the numerical code, to provide the
burning mechanism for the unreacted pockets, the global computed reaction time
was still much longer than in the experiments. Our experimental evidence and results
of the computations clearly show the potential role played by Kelvin–Helmholtz
and Richtmyer–Meshkov instability in enhancing the mixing and burning rates.
Furthermore, considering the recent results of the simulations of Arienti & Shepherd
(2005) of ignition along an unsteady diffusion layer characteristic of detonation triple
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points, it appears that even modest increases in scalar dissipation rates can account
for the promoting effect of diffusive phenomena in detonations.

However, in spite of these results highlighting the necessity of ever-increasing
computational resources to accurately compute unstable detonation waves, the present
study also demonstrated quite conclusively that an average detonation structure is a
meaningful concept that allows rationalization of the detonation wave velocity, the
global rate of energy release inside the structure and the location of the sonic surface.
The results of the present study also illustrate the important role of fluctuations.
The partition of the available momentum and energy into fluctuating components
and the further dissipation of this energy verified previous experimental findings of
Edwards et al. (1963, 1976) on delayed sonic surfaces with respect to the surface
where the chemical reaction was deposited in the flow. However, the amount of
energy contained in these fluctuations was found to be of the order of 1% by the time
all the chemical energy was deposited in the flow. As this represents quite a small
fraction of the available energy, the dissipation process following the chemical energy
release seems of less importance to the dynamic properties of the detonation waves,
such as initiation requirements and failure limits (Lee 1984). For these phenomena, a
much more important rate process is the rate at which energy is being deposited to
the flow. It thus follows that a simplified detonation model should capture the correct
energy addition rate.

The results obtained in the present study suggest that the average structure of
detonations is well-approximated by a one-dimensional description, provided the
generation and decay rates of the fluctuations are explicitly formulated in order to
satisfactorily account for the reaction zone structure and location of the sonic surface.
The competition between these relaxation rates determines the location of the sonic
surface. It thus follows that a purely empirical framework involving a relaxation
formalism can be sought to characterize the cellular structure of detonations by
simply specifying empirical relaxation rate laws for the chemical, mechanical and
energetic relaxation processes towards equilibrium. The various (postulated) relaxation
rate terms in the assumed equations can be calibrated against real or numerical
experiments for the structure. When properly calibrated, this can give the desired
predictive model for the detonation structure and dynamic parameters.

For the weakly unstable detonations, closure also appears possible without invoking
small-scale turbulent effects. For this type of mixture, our results indicate that only
the large-scale fluctuations from the average profiles associated with the large-scale
cellular dynamics are important. Cellular gasdynamic models could be constructed
based on the flow field inside the cells. However, the modelling of the highly unstable
detonations presents significant difficulties, since turbulence at fine scales is likely to
play a crucial role in the gas ignition mechanism. At present, such closure models are
unavailable. Large-eddy-simulation models of highly compressible reacting turbulence
are unavailable. Current turbulence models for deflagrations (e.g. see Peters 2000),
which are based on the low-Mach-number approximation, are inadequate due to
their failure to address the compressibility effects important in the reaction zone
of cellular detonations and the coupling with the highly state-dependent reactions.
Apart from the Richtmyer–Meshkov and Kelvin–Helmholtz instabilities favouring
vorticity production and mixing, much of the turbulent fluctuation is expected to be
driven directly by the chemical energy release at small scales via violent volumetric
expansions of the gas driving pressure waves. We hence expect a situation where
the solenoidal components of the turbulent fluctuations may be as important as the
dilatational components, a situation studied very little in the past. Thus, turbulence
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models capturing these compressible turbulence mechanisms must be developed to
provide closure of the rates of mechanical, thermal and chemical relaxation rates,
as given by the right-hand sides of the Favre-averaged conservation equations for
momentum (A 24), energy (A 25) and reaction scalar (A 26) given in the Appendix.

6. Conclusions
The present work has analysed the reaction zone structure of both highly unstable

and weakly unstable detonations and determined how the various physical phenomena
observed in the reaction zone structure affect the global one-dimensional average
structure of the wave. First, we find that the global behaviour of the wave and
energy partition between fluctuations and mean values can be rationalized in a
one-dimensional average model, suggesting the possibility of modelling complex
detonation waves by a stochastic one-dimensional approach. Two important time
(or length) scales were identified: the time scale of chemical energy release during
which fluctuations are driven by the exothermicity and flow instabilities, and the
location of the sonic surface, which appears to be delayed due to the slower rate of
dissipation of hydrodynamic fluctuations, which act as a slower exothermic process.
By detailed comparison between experiments and numerical simulations, and detailed
investigation of the numerical limitations, we find that a correct model for the
global energy release in highly unstable detonations should involve the mechanism of
turbulent mixing between gases at various stages of their diffusionless oxidation
process, generated by Kelvin–Helmholtz and Richtmyer–Meshkov hydrodynamic
instabilities.
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and the BP-Ford Carbon Mitigation Initiative at Princeton University for this research.
We thank Charles Kiyanda for providing one of his multiple frame photographs prior
to its publication. The first author also wishes to acknowledge very useful discussions
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manuscript.

Appendix
Favre-averaged equations

We present here for completeness the Favre-averaged equations for the reacting
compressible Navier–Stokes equations and their specialization to one-dimensional
stationary flows like those encountered for detonation waves. The non-reactive version
was first derived in Favre (1965). We assume that all variables of interest (pressure,
density, momenta and energies) are turbulent, i.e. stochastic random variables. The
averaging procedure is assumed to be a stochastic one, i.e. by taking moments of
the probability distributions of the various quantities. This corresponds to taking
ensemble averages of different realizations in a practical situation.

The governing equations are the reactive Navier–Stokes equations

ρt + ∇ · (ρu) = 0,

(ρU)t + ∇ · (ρuu) + ∇p) = −∇ · σ ,

(ρe)t + ∇ · ((ρe + p)u) = −∇ · qT − ∇ · (u · σ ) − Q∇ · qD,

(ρα)t + ∇ · (ρuα) = ρẇ − ∇ · qD,

⎫⎪⎪⎬
⎪⎪⎭ (A 1)
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where equations (3.5)–(3.8) have been augmented by the diffusive terms involving the
molecular stress tensor σ , the heat conduction flux qT , and the mass flux qD of the
reacting scalar α.

Each stochastic variable w is decomposed into a mean and fluctuating component,
according to

w(x, y, z, t) = w̄(x, y, z, t) + w′(x, y, z, t), (A 2)

where the overbar represents stochastic averaging. Since in compressible flows each
fluid element is compressed or expanded, we are not interested in the local fluid
velocity u and energy contribution e, but rather in the momentum and energy density
ρu and ρe. This means that we are treating the products ρu and ρe as stochastic
variables, instead of the individual components. This is the basis of Favre-averaging,
where density is used to weight the statistical averages for many fluid elements. The
decomposition of the variables of interest thus becomes

p(x, y, z, t) = p̄(x, y, z, t) + p′(x, y, z, t), (A 3)

ρu(x, y, z, t) = ρu(x, y, z, t) + (ρu)′(x, y, z, t), (A 4)

ρe(x, y, z, t) = ρe(x, y, z, t) + (ρe)′(x, y, z, t). (A 5)

From this choice of averaging procedure, one can define (for convenience, but not
necessary) a Favre-averaged velocity ũ and energy ẽ as

ρu ≡ ρ̄ ũ, (A 6)

ρe ≡ ρ̄ẽ. (A 7)

With these new definitions, we can also define fluctuating quantities u′′ and e′′ as

u′′ ≡ u − ũ, (A 8)

e′′ ≡ e − ẽ (A 9)

such that

ρu′′ = ρe′′ = 0. (A 10)

The temperature, kinetic energy and internal energy are treated by the same
formalism as the energy e. The averaged equation of state for a perfect gas is simply

p̄ = ρRT ≡ ρ̄RT̃ (A 11)

and the averaged caloric equation of state for a perfect gas relates the internal energy
e∗ to the adiabatic exponent γ and the average pressure and density by

ρe∗ ≡ ρ̄ẽ∗ =
p̄

γ − 1
. (A 12)

Taking first-order moments of the governing equations, after some algebraic
manipulations, the Favre-averaged mass and momentum equations become

∂ρ̄

∂t
+

∂

∂xj

(ρ̄ũj ) = 0, (A 13)

∂(ρ̄ũi)

∂t
+

∂

∂xj

(ρ̄ũi ũj + p̄) = − ∂

∂xj

σ̄ij − ∂

∂xj

(ρu′′
i u

′′
j ). (A 14)

Clearly, the choice of Favre-averaging does not introduce any new terms into the
mass conservation equation. The momentum equation has the familiar Reynolds
stress, similar to incompressible flow, although the velocity fluctuations are weighted
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by the local fluid density. The energy equation for high-speed flow is best written in
terms of the enthalpy h. After some manipulation, and making use of the mass and
momentum conservation equations, the averaged form now becomes

ρ̄
D̃h̃

Dt
− ∂p̄

∂t
= − ∂

∂xj

(Qq̄D,j + q̄T ,j + ũi σ̄ij + u′′
i σij ) − ∂

∂t

(
1
2
ρu′′

i u
′′
i

)
− ∂

∂xj

(
γ

γ − 1
p′u′′

j + Qρα′′u′′
i + 1

2
ũjρu′′

i u
′′
i + ũiρu′′

i u
′′
j + 1

2
ρu′′

ju
′′
i u

′′
i

)
(A 15)

where the convective derivative in the macroscopic motion is

D̃

Dt
≡ ∂

∂t
+ ũj

∂

∂xj

(A 16)

and the Favre-averaged total enthalpy is

h̃ ≡ ẽ +
p̄

ρ̄
=

γ p̄/ρ̄

γ − 1
+ 1

2
ũi ũi + α̃Q. (A 17)

There are several new terms appearing on the right-hand side of the conservation
of total enthalpy (A 15). The first three are the averaged diffusive terms appearing
in the non-averaged conservation. The fourth term is the non-dissipative work of
molecular stresses in the velocity fluctuations. The fifth term is the unsteady change
of the turbulent kinetic energy. The sixth term is the turbulent transport of enthalpy
fluctuations. The seventh term is the turbulent transport of chemical energy. The
remaining terms involve the changes in the turbulent kinetic energy.

Finally, the averaged conservation of species becomes

∂(ρ̄α̃)

∂t
+

∂

∂xi

(ρ̄ũi α̃) = ¯̇w +
∂

∂xi

qD,i +
∂

∂xi

ρα′′u′′
i , (A 18)

with the extra term corresponding to the turbulent transport of species by the
microscopic fluctuations (Peters 2000).

One-dimensional stationary Favre-average equations

For propagating detonation waves, we are interested in the statistical structure of
the detonation in the direction of propagation only, i.e. we seek a one-dimensional
probabilistic structure, treating the departure from one-dimensionality as fluctuation.
We shall also assume a statistically stationary structure, i.e. a wave propagating
with a constant time-averaged velocity V̄ and characterized by a statistically similar
spatial structure in the detonation wave frame of reference. The Favre equations for
the stationary one-dimensional reaction zone structure can thus be further simplified
with

∂

∂t
=

∂

∂x2

=
∂

∂x3

= 0 (A 19)

and

ũ2 = ũ3 = 0. (A 20)

In the wave frame of reference, given by

x ′
1 = V̄ t − x1, (A 21)

and assuming isotropic velocity fluctuations, i.e.

u′′
1 = u′′

2 = u′′
3 ≡ u′′, (A 22)
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the Favre-averaged equations in the x ′-direction become

d

dx ′ (ρ̄ũ) = 0, (A 23)

d

dx ′

(
ρ̄ũ2 + p̄

)
= − d

dx ′ (σ̄1j + ρu′′2) (A 24)

ρ̄ũ
dh̃

dx ′ =
d

dx ′ (−Qq̄D + q̄T + ũσ̄ + u′′
i σi1)

− d

dx ′

(
γ

γ − 1
p′u′′ + Qρα′′u′′ +

b + 2

2
ũρu′′u′′ +

b

2
ρu′′u′′u′′

)
, (A 25)

d

dx ′ (ρ̄ũα̃) = ¯̇w +
d

dx ′ qD +
d

dx ′ ρα′′u′′ (A 26)

where b = 2 and 3 for two-dimensional and three-dimensional problems respectively.
Clearly, the only independent variable x ′ can be substituted by a time coordinate,
corresponding to the time taken for an average Lagrangian fluid variable traversing
the average reaction zone structure, by the simple substitution,

dt = dx ′/ũ. (A 27)

Hugoniot analysis

The governing equations can also be integrated once to establish the effect of the
fluctuating quantities on the global properties of the wave. A similar treatment was
performed by White (1962) and Rybanin (1966) for a simpler system where only the
Reynolds stress in (A 24) and the seventh term on the right-hand side of (A 25) were
retained to describe the structure of the solution. The solution derived here is also dif-
ferent, since, due to the Favre-averaging, density appears on the right-hand side of the
governing equations. The equations of mass, momentum and energy can be integrated,
taking the initial state as reference. Normalizing the equations with the initial density
ρo as reference density, the ideal detonation velocity VCJ as reference velocity, V 2

CJ as
energy scale and ρoV

2
CJ as pressure scale, the integrated equations of motion become

ρ̄ũ = V̄ , (A 28)

ρ̄ũ2 + p̄ + f = V̄ 2 +
1

γM2
CJ

, (A 29)

γ

γ − 1

p̄

ρ̄
+ α̃Q + 1

2
ũ2 +

g

V̄
=

1

M2
CJ (γ − 1)

+ Q + 1
2
V̄ 2, (A 30)

where MCJ is the ideal detonation Mach number. In this new notation the unknown
detonation velocity V̄ is thus normalized by the ideal CJ velocity. Since this is
unknown, it appears in the source term of the energy equation as g/V̄ , where g

represents the energy sources in (A 25), i.e.

g ≡ Qq̄D + q̄T + ũσ̄ + u′′
i σi1 +

γ

γ − 1
p′u′′ + Qρα′′u′′ +

b + 2

2
ũρu′′2 +

b

2
ρu′′3. (A 31)

The presence of this term involving the unknown detonation velocity is a departure
from the treatment of White (1962) and Rybanin (1966), due to the Favre averaging
as opposed to conventional averaging in incompressible flows. Likewise, f is the
source term in the momentum equation

f ≡ σ̄1j + ρu′′2. (A 32)
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The Hugoniot equation is obtained by combining the energy and momentum
equations. After some manipulation, we obtain the relationship between pressure and
specific volume (1/ρ) as

p̄ =

1

γM2
CJ

(
γ + 1

γ − 1
− 1

ρ̄

)
+ 2 (1 − α̃) Q + f

(
1

ρ̄
+ 1

)
− 2

g

V̄

γ + 1

γ − 1

1

ρ̄
− 1

. (A 33)

In the absence of the source terms f and g, the above expression is simply the partial
reaction Hugoniot (Fickett & Davis 1979). The presence of the energy sources g

and f has the tendency to shift the pressure either up or down depending on the
magnitude and sign of the various terms.

The Rayleigh line, describing the conservation of momentum and mass, can also
be derived as

p̄ =
1

γM2
CJ

+ V̄ 2

(
γ + 1

γ − 1
− 1

ρ̄

)
− f. (A 34)

The departure of the Rayleigh line from the ideal straight line comes from the
mechanical fluctuation f . The behaviour of the viscous stress and Reynolds stress
is opposite in the reaction zone. Since Reynolds stress is a positive quantity, the
real Rayleigh line lies below the ideal one in the (p, ρ−1)-plane. However, the one-
dimensional viscous stress has the opposite sign in the region of positive velocity
gradient, when the gases are accelerated by the energy deposition. In general, we
expect the turbulent fluctuations to play a more important role.
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